CHROM. 4518

QUALITATIVE DETERMINATION OF POLYAROMATIC HYDROCARBONS IN THE AIR NEAR GAS-WORKS RETORTS

LARS ERIK STRÖMBERG AND GUNNAR WIDMARK

Institute of Analytical Chemistry, University of Stockholm, Roslagsvägen 90, 10405 Stockholm (Sweden) (Received November 10th, 1969)

SUMMARY

An extract of air particulates from a gas-works was separated by two-dimensional thin-layer chromatography. Thirty-five different fractions could be readily observed. Retention values, UV-visible absorption spectra and mass spectra of 14 of the fractions were all very close to corresponding experimental data of standard polyaromatic hydrocarbons. For nonhydrogenated polyaromatic hydrocarbons, a linear relationship was observed between molecular weight and retention value in the first dimension of the thin-layer chromatographic system used.

INTRODUCTION

Because of the extreme complexity of the samples containing polyaromatic hydrocarbons (PAH) associated with air particulates, chromatographic methods are required for the analysis of PAH. In 1965, GUNTHER AND BUZZETTI¹ comprehensively reviewed the occurrence, isolation, identification and determination of PAH. Since then, many methods for PAH analysis have been described based on column chromatography²⁻⁴, thin-layer chromatography (TLC)⁵⁻¹² and gas chromatography¹³⁻¹⁹. The fairly short analysis time and selectivity make TLC generally superior to other chromatographic methods, and the system described by Köhler et al.⁵, with slight modifications, was used in this study. Within 2.5 h the air particulate extract gave a chromatogram in which thirty-five spots were readily visible in UV light.

Identification studies of PAH at present are generally based on comparison with standards. For air pollution samples, the unknown PAH can generally be isolated only in submicrogram quantities so that previously only comparisons of retention values and of absorption and fluorescence spectra have been possible. In this study, however, comparison with standards is based not only on retention values and UVabsorption spectra but also on mass spectra. The method has been tested by applying it to the particularly complex mixture of organic matter extracted from air particulates collected from air near gas-works retorts. The UV spectra of isomeric PAH are usually readily distinguishable, but the spectra of a given PAH and its alkyl derivatives can be very similar. Clear differences are shown, however, between the mass spectra of unsubstituted PAH and alkyl derivatives. In particular, the number of rings and the number of carbon atoms in side chains can generally be calculated from the molecular weight for nonhydrogenated PAH containing up to six rings. Thus, the UV-MS combination appears to be a useful tool for the identification of PAH.

MATERIALS AND METHODS

Reagents

Benzene P.A., toluene P.A., methanol P.A., and Aluminium Oxide G were obtained from Merck; *n*-hexane (puriss. min. 99%) from Kebo; ether anhydrous A.R. from Mallinkrodt; and cellulose powder MN 300 G/Ac. (acetyl content approx. 40%) from Macherey, Nagel & Co. Ethyl alcohol 99.5% spect. grade and ethyl alcohol 95% were used. All solvents were redistilled before use, and the first and last 10% fractions were discarded.

Apparatus

The apparatus used consisted of the following: a Desaga-Stahl kit for the preparation of thin layers on 20×20 cm glass plates; a Beckman DBG UV-visual spectrophotometer equipped with recorder S.03507H, spectrosil semimicro cells of 1 cm path length and variable beam attenuators; an LKB 9000 mass spectrometer.

Procedure

A dust sample was collected 1.6 m above a retort by sucking 60 m³ of air through a glass fiber filter for 1 h. The filter was then extracted overnight in a Soxhlet apparatus with benzene. The extract was finally concentrated and stored in the dark until analysis.

A slurry for the preparation of 5 thin-layer plates 0.25-mm thick was prepared from 20 g of aluminium oxide, 10 g of cellulose acetate powder and 40 g of 95 % ethyl alcohol by mechanical stirring at about 1000 r.p.m. for 5 min. After drying in air for 10 min, the layers were heated in an oven at 100° for 15 min.

The concentrated benzene extract from the filter was applied to a corner of a thin-layer plate with a $10-\mu$ l microsyringe to give a spot diameter of not more than 4 mm. The capacity of the system was limited by tailing on the aluminium oxide so that up to ten maximally charged layers had to be used to give good absorption spectra for the minor component PAH. Following the method described by Köhler *et al.*⁵, the mobile phases were *n*-hexane-toluene (9:1) for the first direction, and ethermethanol-water (4:4:1) for the second direction. After development, the plates were dried in air for some minutes and then were examined under a 254-nm UV lamp. The fluorescent spots were outlined with a stylus, and Fig. 1 shows their positions. The numbered spots have been analyzed.

In order to improve the separation, the whole chromatographic process was repeated for each individual fraction as follows. The adsorbent in corresponding areas of each of the ten thin-layer plates was collected in suction tubes (Fig. 2a) from which the fractions were washed with four successive 0.25-ral portions of benzene (Fig. 2b). The solvent was finally evaporated from the washings in a stream of nitrogen in evaporators, illustrated in Fig. 2c.

Four thin-layer plates 0.5-mm thick were now prepared. Small holes in the layers

were made by suction with a pipette, to fit the filter paper discs that were placed in the holes and carefully covered with a minimum quantity of a water-aluminium oxide slurry to ensure a normal feed of mobile phase. Six to eight discs were placed about z cm from one side of the plates. Chromatography was carried out again in the first dimension, and, after repeated suction, washing and evaporation, the PAH fractions

Fig. 1. Spot positions in a thin-layer chromatogram of an air particulate extract.

Fig. 2. (A) Suction tube and holder. a = aluminium tube, b = glass tube, c = glass wool plug, d = silicon rubber ring. (B) Washing of PAH fraction. <math>a = benzene, b = adsorbent, c = glass wool plug, d = test tube. (C) In the LINNARSON²³ evaporator, the benzene extract is brought to the filter paper disc by capillary force. When the solvent evaporates, solute will be collected on the disc. <math>a = steel thread, b = 4-mm-diameter filter paper disc, c = glass capillary, d = aluminium cap, e = test tube.

were rechromatographed in the second dimension. Background samples were prepared by suction of PAH-free areas.

In order to correlate mobility with known standards, four 0.25-mm thick thinlayer plates were prepared as described above. To the first three plates a constant small amount of the particulate extract was applied. To the starting points of the second, third and fourth thin-layer plates were added, respectively, 100, 200 and 1000 ng of the standard PAH in question. Two-dimensional chromatography was then carried out as described earlier.

The benzene solution of the PAH fractions resulting from the final chromatographic step were evaporated in a stream of nitrogen. When the tubes appeared to be dry on the inside, the nitrogen stream was maintained for 30 sec to remove the last traces of benzene. Two hundred microliters of spectroscopic grade alcohol were immediately added, and after 2 min the alcoholic solutions were gently shaken and transferred to the cells. PAH fractions and corresponding background samples were then scanned between 500 and 200 nm. Solutions were diluted, if necessary, in order to adjust all absorbance peaks within the chart paper width (absorbance 1.0).

The alcoholic solutions were transferred back to the corresponding tubes and evaporated as described earlier (Fig. 2c), except that glass fiber discs (cut from the filters) were used instead of paper discs. These were then introduced into the ion source of the mass spectrometer via the direct inlet probe. The probe heater control was turned to maximum, and the scan was started near the top of the TIC recorder peak. (TIC, total ionization current.) The ion source temperature was about 230°, the trap current 60 μ A and the electron energy 70 eV.

RESULTS AND DISCUSSION

Mobilities

From the thin-layer chromatograms it appeared that R_F values in the first direction were dependent on molecular size. This is demonstrated in Fig. 3. The PAH

Fig. 3. Plot of R_F values in the aluminium oxide system vs. m/e for the strongest peak of each isolated fraction.

which lie along the line contain no saturated carbons in the nucleus. Therefore, it is considered that the main components of fractions 8, 17 and 24 consist of partially saturated or heterocyclic ring systems. In the second system, the relation appears to be more complicated. Long molecules such as 3,4-benzopyrene and chrysene are strongly retarded, whereas more compact molecules such as 1,2-benzopyrene, triphenylene and 1,12-benzoperylene have high R_F values. This is probably due to the chain structure of the adsorbent (acetyl cellulose).

In order to correlate R_F values for fractions and standard PAH, particulate extract and standards were chromatographed. Dependence of R_F values on sample size was noted, and irreproducibility may also be due to variation in the activity of the aluminum oxide. The experimental result is illustrated in Fig. 4 showing that for identification purposes R_F values of the TLC system used are comparable only on the same chromatogram.

11 1

 $\circ \longrightarrow I$

Fig. 4. Spot center positions of some fractions of the particulate extract (dots) compared with those obtained by chromatography of corresponding standard PAH (crosses).

On the second and the third chromatograms mentioned in the procedure for correlating mobilities, the spot intensity of the added PAH increases compared with the spots of the particulate extract and even very small mobility differences could be detected. The true fluorescent colors could be compared on the first and fourth chromatograms. From the latter, standard UV and mass spectra were then obtained. The results of these observations are listed in Table I. R_F values are taken from Fig. 1.

UV-visible spectrophotometry

Experiments with blank thin-layer plates showed that background UV-visible absorption is caused by substrate impurities. In order to study the relation between background absorption and spot position, nine spots from a developed blank thinlayer plate were analyzed as described earlier. The spot positions are shown in Fig. 5. It now appeared that background absorption increased from spot 7 to spot 1, from 8 to 2, etc., whereas it was constant from 1 to 3, from 4 to 6, etc. This shows that the substrate impurities are eluted only by the methanol-ether-water mixture, and thus

TABLE I

RE VALUES AND	FLUORESCENT	COLORS O	OF FRACTIONS	AND STANDARDS
The AUDORO VUD	1.70.010701111			

Fraction	Corresponding standard PAH	Fluorescent	R _F values		
No. with no detectable differences in retention values or fluorescent color		color	Ī	II	
T,	3,4-benzopyrene	violet	0.29	0.23	
2	3,4-benzofluoranthene	light blue	0.27	0.30	
3	chrysene	violet	0.38	0.34	
4	2, 3-o-phenylenepyrene	yellow	0.19	0.36	
Ś	10,11-benzofluoranthene	yellow	0.28	0.37	
ŏ	11,12-benzofluoranthene	violet	0.28	0.44	
7		violet	0.15	0.46	
8		grey	0.45	0.45	
9	1,2-benzanthracene	violet	0.39	0.50	
io	pyrene	violet	0.54	0.52	
C I	perylene	blue	0.29	0.56	
[2	fluoranthene	bluish grey	0.52	0.55	
13		violet	0.11	0.53	
4		greenish grey	0.46	0.60	
5	1,2-benzopyrene	violet	0.29	0.61	
۰ آ		grey	0.13	0.57	
¹ 7		violet	0.53	0.63	
	1,12-benzoperylene	violet	0.20	0.66	
20	• •	greenish grey	0.46	0.66	
21		light yellow	0.10	0.70	
2		violet	0.26	0.53	
23		grey	0.25	0.б1	
24		violet	0.54	0.70	
26		blue	0.25	0.69	
27	triphenylene	violet	0.38	0.61	

background absorption can be compensated for if reference spot positions are chosen as illustrated in Fig. 6.

Fig. 5. Positions of reference spots for background absorption study.

Fig. 6. Final chromatogram of fractions 1, 2, 3, 5, 6 and 11. Reference spots are to the right of spot 11.

The UV-visible absorption spectra illustrated in Figs. 7 to 32 were obtained from the isolated fractions of the particulate extract and corresponding standards. The following comments concerning the absorption spectra can be made.

Fig. 8. (----) fraction 2, (---) 3,4-benzofluoranthene.

Fig. 9. (-----) fraction 3, (----) chrysene. Fig. 10. (-----) fraction 4', (----) anthanthrene.

Fig. 13. (-----) fraction 6, (----) 11,12-benzofluoranthene.

Fig. 14. (-----) fraction 7, (----) 3,4-benzotetraphene.

Fig. 16. (----) fraction 9, (---) 1,2-benzanthracene.

Fig. 18. (-----) fraction 11, (---) perylene.

Fig. 19. (----) fluoranthene.

Fig. 20. Fraction 13.

Fig. 21. ((-----)) fraction 1.4. (upper ----) 1-methylpyrene, (lower -----) 2,3-benzofluorene. Fig. 22. ((------)) fraction 15. ((----)) 1,2-benzopyrene.

Fig. 23. Fraction 16.

Fig. 24. Fraction 17.

Fig. 26. Fraction 20.

•1

Fig. 29. Flattion 23.

Fig. 30. Fraction 24.

Fig. 31. Fraction 26.

Fig. 32. (----) fraction 27, (----) triphenylene.

Fraction 4. The lower edge of this spot showed a blue fluorescence and therefore the lower part of fraction 4, called 4' (Fig. 1), was run separately in the last chromatographic step. From the spectra it seems that this component may be anthanthrene, but this was confirmed only by comparing R_F values and fluorescent colors.

Fraction 7. A 3,4-benzotetraphene standard was not available and therefore R_F values could not be compared. The standard UV spectrum is taken from reference 20.

Fraction 13. The mass spectrum of this fraction shows the presence of PAH having a mol. wt. of 302. However, we do not know any PAH of mol. wt. 302 for which the absorption spectrum corresponds to that of fraction 13. It is considered that at least two such PAH are present. R_F values and fluorescent colors indicate that dibenzo[a,e]pyrene, but not the other dibenzopyrenes, may be present.

Fraction 14. According to the position of this spot (Fig. 3), the fraction consists essentially of PAH isomers of mol. wt. 216. Well-known coal-tar constituents (21) of this molecular weight are the three methylpyrenes and the three benzofluorenes. 3,4-Benzofluorene shows absorption peaks at 230 and 310 nm and hence it cannot be a major component of this fraction. 1,2-Benzofluorene has an R_F value of 0.52 in the second direction and can thus be excluded. However, the presence of methylpyrenes and 2,3-benzofluorene does not explain the fluorescent color of the fraction because these all show violet fluorescence on the thin-layer plate. Provided that the methylfluoranthenes have fluorescent colors and absorption spectra similar to fluoranthene, the fluorescent color in fraction 14 may be explained by the presence of methylfluoranthenes. This may also explain the absorption peaks at 290 and 360 nm. Unfortunately, methylfluoranthene standards were not available.

Fraction 17. According to the absorption spectrum (22), the component having mol. wt. 218 in this fraction may be benzo[b]naphtho[2,3-d]furan which is a known coal-tar constituent (21). A standard was not available.

Fraction 20. Fractions 20 and 14 have the absorption peaks at 290 and 360 nm

TABLE II

MASS SPECTROMETRIC DATA OF FRACTIONS AND STANDARDS

Frac- tion No.	Mass number m/e	MS inten- sities of fractions ^a	MS intensities of corre- sponding standard PAH ^b	Frac- tion No.	Mass number m e	MS inten- sities of fractions ^a	MS intensities of corre- sponding standard PAH ^b
I			3,4-Benzo-		124	63	55
			pyrene		I 3I 1/2	61	
	252	1000	1000		138 1	59	
	126	218	222		133	59	
	253	208	237		I 32 1	59	
	250	176	202		253	57	
	125	153	152		272	53	47
	113	108	88	5			to.11-Benzo-
	112	77	60	5			fluoranthene
	124	72	03		252	1000	1000
· · · ·	251	05	04		253	233	234
	240	40	47		250	221	229
2			3.4-Bes: 10-		126	164	178
-			fluoranthene		125	140	159
	252	1000	1000		251	64	65
	253	234	238		113	62	73
	126	199	196		124	56	64
	250	195	190		112	54	58
	125	128	131		266	53	_
	113	70	68		248	53	55
	112	.58	56	_	•		
	251	57	56	6			II, I2-Benzo-
	124	55	54				fluoranthene
	248	51	49		252	1000	1000
			A 1		126	261	234
3			Chrysene		253	236	208
	228	1000	1000		250	169	169
	220	219	213		125	147	156
	229	185	177		113	96	9 6
	. 114	109	135		112	81	7º
	113	100	135		266	70	
	227	82	81		124	67	57
1	101	07	74		251	60	49
	224	54	52		248	52	44
	225	44	52	~			Pentacyclic
, ,	1.12	44	55 C. C. C. Bhannil	/	2		PAH
4			anohowana		278	1000	1000
	276	7000	too		279	285	238
	266	367	1000		139	195	105
	252	217	•		270	175	109
	277	227	261		130	140	95
•	138	227	277		125	00	52
	274	163	18 6		137	75	50
	265	103 TA7	100		274	00	59
	137	-47 TA5	т 86		277	47	53
1.1.1	275	08	103		1398	50	47
	-/J 124	90 02	61	8			
	278	00		-	230	1000	
	267	76			215	400	
	263	73			220	354	
	250	67			202	323	
	136	65	75		228	310	
,	~ .		<i>e</i> •			~	

Frac- tion No.	Mass number m e	MS inten- sities of fractions ^a	MS intensities of corre- sponding standard PAH ^b	Frac- tion No.	Mass number m/e	MS inten- sities of fractions [™]	MS intensities of corre- sponding standard PAH ^b
<u></u>	101	308			203	183	167
	231	200			201	129	116
	114	200			88	113	III
	113	185			87	77	66
	220	169			1007	63	43
~		2	T & Dawage		101]	39	41
9			1,2-Benzan-	12	-		•
	228	1000	1000	-5	302	1000	
	220	245	1000		303	256	
	220	~4J 210	212		300	221	
	114	181	213		151	102	
	242	172	191		200	- 35	
	112	164	T46		280	118	
	101	104	75		304	02	
	112	84	/J 58		298	79	
	227	68	50 64		318	77	
	100	68	~ 1		301	75	
	224	65	52		0	15	
	225	55	33 40	14			1-Methyl-
	5	55	77		~		pyrene
10			Pyrene		216	1000	1000
	202	1000	1000		215	058	414
	101	246	275		217	186	171
	203	190	193		213	180	119
	200	190	193		942	183	107
	100	166	193		218	154	
	201	150	164		1075	141	80
	88	02	74		100	130	131
	1003	53	59		228	135	74
	234	51	·		1064	114	84
		44	57		214	100	78
	100	39	4.7		107	68	70
	199	30	41		/		
II			Perylene	14			2,3-Benzo-
	252	1000	1000				fluorene
	253	258	235				1000
	250	250	235				77 1
	126	250	219				190
	125	194	191				174
	254	153					100
	239	109					
	113	105	51				200
	202	94					174
	124	90	72				
	200	00					
	251	79	00				93
	204	70					79
	440	05 r6	59				74
	114	50	. 50	15			1,2-Benzo-
12			Fluoranthene	-			pyrenc
	202	1000	1000		252	1000	1000
	101	232	235		250	208	253
	200	196	162		253	203	233
	100	188	149		126	169	196

TABLE II (continued)

(continued on p. 42)

4I

TABLE II	(continued)
----------	-------------

Frac- tion No.	Mass number m/e	MS inten- sities of fractions*	MS intensities of corre- sponding standard PAH ^b	Frac- tion No.	Mass number m/e	MS inten- sities of fractions®	MS intensities of corre- sponding standard PAH ^b
	125	162	204		275	110	121
	113	87	+ 98		282	101	
	251	72	74		208	100	
	124	72	78		253	08	
	112	59	69		281	97	
	248	54	57		123	83	86
	•		57		230	-5 76	
16	_				126	76	
	278	1000			272	73	
	290	485			215	73	
	280	359			124	71	68
	276	348			136	68	105
	279	344			•		U
	289	333		20	-		
	292	307			216	1000	
	265	296			232	947	
	138	274			215	937	
	266	267			230	532	
T #7	•				231	468	
-/	218	1000			202	277	
	222	1000 E7E			240	251	
	-3- 	J/J E7E			213	245	
	216	272			229	194	
	204	221			217	191	
	210	17A		21			
	202	- / 4 1 5 7 1			302	1000	
	102	- J7 T 57			316	294	
	011	-37 152			303	276	
	231	121			151	258	
					300	244	
19			1,12-Benzo-		150	171	
			perylene		290	142	
	276	1000	1000		304	124	
	278	833			289	124	
	266	5 ⁶ 7			298	95	
	265	400				-	
	280	394		46	266	1000	
	279	306			200	255	
	277	283	261		203	233	
	138	278	292		265	242 225	
	274	222	206		1211		
	263	222			264	127	
	208	189			133	116	
	137	101	241		268	103	
	204	152			230		
	292	151			132	00	
	207	148			- -		
	139	144		23			
	125	131	125		200	1000	
	1318	120			252	774	
	220	119			205	390	
	4 5 4	110			251	234	
	+33 1221	114			203	211	4
	+34g 220	114			207	208	
	~37				250	190	

٠

Frac- tion No.	Mass number m/e	MS inten- sities of fractions [®]	MS intensities of corre- sponding standard PAH ^b	Frac- tion No.	Mass number m e	MS inten- sities of fractions™	MS intensities of corre- sponding standavd PAH ^b
	126	196		27			Triphenylene
	284	192		•	242	1110	
	133	166			228	1000	1000
					230	538	
24					226	405	272
•	246	1000			215	392	
	232	448			229	386	214
	245	395			239	297	
	231	323			113	263	181
	256	314			241	259	
	258	305			243	253	
	115	269			114	234	123
	242	265			216	177	
	202	251			244	175	
	272	229			227	172	128
					101	172	58
26					240	146	
	266	1000			107 ½	138	
	265	324			119 1	132	
	267	265			224	113	63
	270	245			121	109	
	263	216			112	104	79
	282	163			231	103	
	280	153			225	91	55
	133	141					
	131 1	139		τ	Usually o	only for the t	en most intense
	264	II4		MS-pe	aks.	-	

TABLE II (continued)

MS-peaks.

^b When standard PAH was available.

in common, and hence methylfluoranthenes may be present in fraction 20. Presence of methylpyrenes and benzofluorenes is excluded by R_F values.

Fraction 22. From mass spectra and spot positions it seems that fractions 22, 23 and 26 are PAH having mol. wt. 266. None of them seems to be 1,2:6,7-dibenzofluorene or 2',1':1,2-naphthofluorene, the two PAH having mol. wt. 266 reported by LANG AND EIGEN²¹ as coal-tar constituents. However, the absorption spectrum of fraction 22 is rather similar to that of 1,2-benzopyrene, so the component of fraction 22 having mol. wt. 266 may be a methyl-1,2-benzopyrene. A standard was not available.

Fraction 27. From the spot position, it is considered that the component of this fraction having mol. wt. 228 is a tetracyclic PAH. Among the five possible cataannelated tetracyclic PAH, naphthacene and 3,4-benzophenanthrene are excluded by their absorption spectra and R_F values. Chrysene and 1,2-benzanthracene were identified in fractions 3 and 9, respectively. Thus only triphenylene remains.

Mass spectrometry

The background disturbance of mass spectra was reduced by careful distillation of the solvents and by running the thin-layer plates with the second system solvent mixture before application. In this way, background disturbance became significant

only in the case of the minor component fractions, and it was rather easily compensated for by subtracting the peak heights in question from the mass spectra of the reference samples.

In Table II, mass spectra of fractions and standards are compared. From the spectra of the unknown fractions the 10 strongest peaks are reported, and for the other fractions enough peaks are reported to cover the 10 strongest peaks of the corresponding standard spectrum.

From mass spectra of PAH standards having mol. wt. 216 it appeared that the relative intensity of the M-I peak was strongly affected by the position of methylene and methyl groups in the molecules. Mass spectrometry may afford a method of determining the orientation of alkyl substituents in nanogram quantities of PAH.

In the case of fraction 7, 3,4-benzotetraphene standard was not available and therefore comparison is made with the spectrum of the isomer 1,2:5,6-dibenzanthracene.

REFERENCES

- I F. A. GUNTHER AND F. BUZZETTI, Residue Reviews, 9 (1965) 90.
- 2 M. WILK, J. ROCHLITZ AND H. BENDE, J. Chromatog., 24 (1966) 414.
- 3 G. E. MOORE, R. S. THOMAS AND J. L. MONKMAN, J. Chromatog., 26 (1967) 456. 4 A. ZDROJEWSKI, L. DUBOIS, G. E. MOORE, R. S. THOMAS AND J. L. MONKMAN, J. Chromatog., 28 (1967) 317. 5 M. Köhler, H. Golder and R. Schiesser, Z. Anal. Chem., 206 (1964) 430.

- 5 M. KOHLER, H. GOLDER AND R. SCHIESSER, Z. Anal. Chem., 206 (1964) 430.
 6 J. LAM AND A. BERG, J. Chromatog., 20 (1965) 168.
 7 E. SAWICKI, T. W. STANLEY AND W. C. ELBERT, J. Chromatog., 20 (1965) 348.
 8 H. KESSLER AND E. MÜLLER, J. Chromatog., 24 (1966) 469.
 9 R. H. WHITE AND J. W. HOWARD, J. Chromatog., 29 (1967) 108.
 10 J. JANÁK AND V. KUBECOVÁ, J. Chromatog., 33 (1968) 132.
 11 G. BIERNOTH, J. Chromatog., 36 (1968) 325.
 12 D. F. BENDER, Environ. Sci. Technol., 2 (1968) 204.
 13 W. LUINSKY, L. L. DOMSKY, AND L. WARD, J. Care Chromatog. 2 (1967) 168.

- 13 W. LIJINSKY, I. I. DOMSKY AND J. WARD, J. Gas Chromatog., 3 (1965) 152.
- 14 G. C. GUVERNATOR III, F. L. GAGER, Jr., E. W. ROBB AND A. BAVLEY, J. Gas Chromatog., 3 (1965) 363.
- 15 V. CANTUTI, G. P. CARTONI, A. LIBERTI AND A. G. TORRI, J. Chromatog., 17 (1965) 60.
- 16 J. R. WILMSHURST, J. Chromatog., 17 (1965) 50.
- 17 L. DE MAIO AND M. CORN, Anal. Chem., 38 (1966) 131. 18 N. CARUGNO AND S. ROSSI, J. Gas Chromatog., 5 (1967) 103.
- 19 H. J. DAWIS, Anal. Chem., 40 (1968) 1583.
- 20 E. CLAR, Polycyclic Hydrocarbons, Academic Press, London and New York, Springer Verlag, Berlin, Göttingen, Heidelberg, 1964. 21 K.-F. LANG AND I. EIGEN, Fortschr. Chem. Forsch., 8 (1967) 91.
- 22 R. A. FRIEDEL AND M. ORCHIN, Ultraviolet Spectra of Aromatic Compounds, Wiley, New York, Chapman and Hall, London, 1951.
- 23 A. LINNARSON, private communication.